Sinusoidal signals \& phasors.
Modern power system operates on $\frac{3-p h a s e}{\hat{\imath}}$ alternating currents.
we will define this later in this chapter.

Voltage everywhere within the entire power system is a sinusoidal function of time at a particular frequency.

- In the US, that frequency is 60 Hz .
- In Europe, that frequency is 50 Hz .
Q. Can you interconnect two power systems operating at different frequencies?
A. Not directly ... caw be done through $D C$ interties. We will mot study that.

Consider a single "component" connected to a power system as shown:


$$
v(t)=v_{0} \cdot \cos \left(\omega_{h}^{\omega t}+\theta_{v}\right) .
$$

called the angular frequency. $\omega=2 \pi$.(frequency). rad

$$
=2 \pi .60 \mathrm{rad} / \mathrm{s}
$$

This number often for a 60 Hz power system. comes in handy in calculations

$$
\approx 377 \mathrm{rad} / \mathrm{s}
$$

Associate with the signal $v(t)$, the complex number $\bar{V}:=\frac{v_{0}}{\sqrt{2}} e^{j \theta_{0}}$, known as the voltage phasor. Here, $j:=\sqrt{-1}$.
Q. What is the mit of the voltage phasor?
A. Volts.

- If this component is comprised of inductive, capacitive, and resistive elements, thew the current $i(t)$ caw be show w to be sinusoidal. with the same frequency as of $v(t)$. Let $i(t):=i_{0} \cos \left(\omega t+\theta_{i}\right)$.
Associate with $i(t)$, the current phasor $\bar{I}:=\frac{i_{0}}{\sqrt{2}} e^{j \theta_{i}}$
- Let's calculate the instantaneonc power $p(t)$ flowing into the component.

$$
\begin{aligned}
p(t) & =v(t) \cdot i(t) \\
& =v_{0} \cos \left(\omega t+\theta_{v}\right) \cdot i_{0} \cos \left(\omega t+\theta_{i}\right) \\
& =\frac{1}{2} v_{0} i_{0}[\underbrace{\cos \left(2 \omega t+\theta_{v}+\theta_{i}\right)}_{\begin{array}{c}
\text { sinusoidal with } \\
\text { angular frequency } 2 \omega .
\end{array}}+\underbrace{\cos \left(\theta_{v}-\theta_{i}\right)}_{\begin{array}{c}
\text { remains } \\
\text { constant. }
\end{array}}] .
\end{aligned}
$$

- Average power is given by

$$
\langle p(t)\rangle=\frac{1}{T} \int_{0}^{T} p(t) d t
$$

where $T$ is a "cycle" given by

$$
T=\frac{1}{\text { frequency }}=\frac{2 \pi}{\omega}
$$

Recall $p(t)$ has two components/ang. freq. $2 \omega$ time - invariant component.
Avg. of sinusoidal component $=0 \ldots$ convince

$$
\begin{aligned}
\Rightarrow\langle p(t)\rangle & =\frac{1}{T} \int_{0}^{T} v_{0} i_{0} \cos \left(\theta_{v}-\theta_{i}\right) d t \\
& =\frac{1}{2} v_{0} i_{0} \cos \left(\theta_{v}-\theta_{i}\right) .
\end{aligned}
$$

Now, let's express $\langle p(t)\rangle$ in terms of the phasors $\bar{V}, \bar{I}$.

Notice that

$$
\text { at } \begin{aligned}
& \operatorname{Re}\{\bar{V} \bar{I} * \quad * \\
= & \operatorname{Re}\left\{\frac{v_{0}}{\sqrt{2}} e^{j \theta_{v}} \cdot \begin{array}{c}
i_{0}{ }^{2} e^{2}+j e^{-j} \theta_{i}
\end{array}\right\} \\
= & \frac{1}{2} v_{0} i_{0} \operatorname{Remplex} \\
= & \operatorname{Re}\left\{e^{j\left(\theta_{\theta}-\theta_{i}\right)}\right\} \\
= & \langle p(t)\rangle
\end{aligned}
$$

In words, the average power equals the real part of a complex number ${ }_{S} \bar{S}=\bar{V} \bar{I}^{*}$. we call $\bar{S}$. "complex power" or "apparent power."
Q. Is $\bar{S}$ a phasor?
A. No! $\bar{S}$ is not associated with a purely sinusoidal signal that is physically meaningful.

Write $\bar{S}=P+j Q$. Then, we call
$P$ as real power
Q as reactive power.
$P$ has the physical meaning that it equals the average power transferred. $Q$ does not quite enjoy suck an interpretation.
"A digression: The "root-mean-square" value of the voltage signal $v(t)$ is defined as

$$
V_{\text {RMS }}:=\left(\frac{1}{T} \int_{0}^{T^{n / \text { ache }} \text { length }} v^{2}(t) d t\right)^{1 / 2} .
$$

Let's simplify!

$$
\begin{aligned}
& \text { Lets simplify! } \\
& V_{\text {RMS }}=\left(\frac{1}{T} \int_{0}^{T} v_{0}^{2} \cos ^{2}\left(\omega t+\theta_{v}\right) d t\right)^{1 / 2} \\
&=\left(\frac{v_{0}^{2}}{T} \int_{0}^{T} \frac{1}{2}\left(1+\cos \left(2\left(\omega t+\theta_{v}\right)\right)\right) d t\right)^{1 / 2} \\
&=2 \cos ^{2} \alpha-1 .
\end{aligned}
$$

$$
\left.\left.\begin{array}{rl}
V_{\text {RMS }} & =\left(\frac{V_{0}^{2}}{T} \int_{0}^{T} \frac{1}{2}\left(1+\underset{\cos \left(2\left(\omega t+\theta_{\nu}\right)\right)}{\text { sang. Freq. } 2 \omega \text {. with }}\right)\right.
\end{array}\right) d t\right)^{1 / 2}
$$

Recall that $\bar{V}=\frac{v_{0}}{\sqrt{2}} e^{j \theta_{v}}$, which also equals $\quad V_{R M S} e^{j \theta_{v}}$.

- Back to complex power $\bar{S}=P+j Q$. What are their units?
- S : Volt-ampere (VA).
- $P$ : watt $(W)$.
- Q: volt-ampere-reactive (VAR).

transferring average power $\langle p(t)\rangle=\langle v(t)$. (th) $\rangle$

This is the real circuit with sinusoidal time domain signals.

This is a mathematical abstraction of a reirenit with phasors and other complex quantities

transferring complex power $\bar{S}=\bar{V} I^{*}$.

The signals $v(t), i(t)$ obey Kirchhoff's laws, and $p(t)$ recuains conserved. For example,


Then, $i(t)=i_{1}(t)+i_{2}(t)+i_{3}(t)$

The mathematical abstraction with phasors also satisfy analogous rules.


Then, $\bar{I}=\bar{I}_{1}+\bar{I}_{2}+\bar{I}_{3}$.

Similarly,


$$
\Rightarrow \quad p_{1}(t)+p_{2}(t)+p_{3}(t)=0
$$

Equivalently,


$$
\Rightarrow \bar{S}_{1}+\bar{S}_{2}+\bar{S}_{3}=0
$$

The mathematical abshaction reduces manipulation with sinusoids to arithmetic on complex numbers. It is a useful formalism.

Analog of Ohm's law:

$$
\begin{aligned}
& \underset{v_{1}(t)}{\substack{i(t)}} \underset{\sim}{i(t)} \underset{v_{2}(t)}{0} \Rightarrow \quad v_{1}(t)-v_{2}(t)=R \cdot i(t) \\
& \underset{\bar{V}_{1}}{\stackrel{\bar{I}}{O}-\bar{V}_{1}-\bar{V}_{2}=\bar{Z} \cdot \bar{I} .}
\end{aligned}
$$

$\bar{Z}$ is called the impedance.
$\bar{Z}=R \quad$ if it is a purely resistive element.
$\bar{z}=j \omega L$, if it is a purely inductive element.
$\bar{z}=1 /(j \omega C)$, if it is a purely capacitive element.

- Power triangle: Draw $P, Q, \bar{S}$ on the complex plane.

$\cos \theta$ is called "power factor."
$\frac{\bar{P}}{\frac{S}{9}}$ a and ${\underset{S}{s}}_{\frac{P}{s}}$ both have the same power factor because $\cos \theta=\cos (-\theta)$. Consider a component that consumes (complex) power $\bar{S}$. Call such a component
 a "load". To distinguish between the above power triangles with the same power factors, we call them by two different names.

$$
\frac{\bar{S}}{P} Q: \operatorname{Lagging}(Q>0)
$$

$$
\text { - } \overbrace{s}^{p}: \text { Leading }(Q<0) \text {. }
$$

Q. Why do we label them as "lagging" or "leading"?

To answer the question, let's plot $\bar{V}$ and $\bar{I}$ on the complex plane. Two possible cases are


$$
\theta_{\theta}-\theta_{i}>0 .
$$

In terms of phases, the current "lags" the voltage.

$$
\bar{S}=\bar{V} \bar{I}^{*}
$$

$$
\Rightarrow Q=\operatorname{Im}\left\{\bar{V} \bar{I}^{*}\right\}
$$

$$
=|\bar{V}| \cdot|\bar{I}| \cdot \sin \left(\theta_{v}-\theta_{i}\right)
$$

$$
>0 .
$$

$$
\Rightarrow \frac{\bar{S}}{P} \frac{\overline{1} \cdot}{P}
$$



$$
\theta_{v}-\theta_{i}<0
$$

In terms of phases, the current "leads" the voltage.

$$
\begin{aligned}
& \bar{S}=\bar{V} \bar{I}^{*} \\
& \Rightarrow Q=\operatorname{Im}\left\{\bar{V} \bar{I}^{*}\right\} \\
&=|\bar{V}| \cdot|I| \cdot \sin \left(\theta_{V}-\theta_{i}\right) \\
&<0 \\
& \Rightarrow P \\
& \bar{S}
\end{aligned}
$$

